ar X iv : m at h / 05 01 07 7 v 1 [ m at h . D S ] 6 J an 2 00 5 ITERATED FUNCTION SYSTEMS , RUELLE OPERATORS , AND INVARIANT PROJECTIVE MEASURES

نویسنده

  • DORIN ERVIN DUTKAY
چکیده

We introduce a Fourier based harmonic analysis for a class of discrete dynamical systems which arise from Iterated Function Systems. Our starting point is the following pair of special features of these systems. (1) We assume that a measurable space X comes with a finite-to-one endomorphism r : X → X which is onto but not one-to-one. (2) In the case of affine Iterated Function Systems (IFSs) in R d , this harmonic analysis arises naturally as a spectral duality defined from a given pair of finite subsets B, L in R d of the same cardinality which generate complex Hadamard matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 01 07 7 v 2 [ m at h . D S ] 7 J an 2 00 5 ITERATED FUNCTION SYSTEMS , RUELLE OPERATORS , AND INVARIANT PROJECTIVE MEASURES

We introduce a Fourier based harmonic analysis for a class of discrete dynamical systems which arise from Iterated Function Systems. Our starting point is the following pair of special features of these systems. (1) We assume that a measurable space X comes with a finite-to-one endomorphism r : X → X which is onto but not one-to-one. (2) In the case of affine Iterated Function Systems (IFSs) in...

متن کامل

ar X iv : m at h / 04 07 51 7 v 1 [ m at h . C A ] 2 9 Ju l 2 00 4 OPERATORS , MARTINGALES , AND MEASURES ON PROJECTIVE LIMIT SPACES

Let X be a compact Hausdorff space. We study finite-to-one map-pings r : X → X, onto X, and measures on the corresponding projective limit space X∞(r). We show that the invariant measures on X∞(r) correspond in a one-to-one fashion to measures on X which satisfy two identities. Moreover, we identify those special measures on X∞(r) which are associated via our correspondence with a function V on...

متن کامل

ar X iv : m at h / 04 07 51 7 v 2 [ m at h . C A ] 3 0 Ju l 2 00 4 OPERATORS , MARTINGALES , AND MEASURES ON PROJECTIVE LIMIT SPACES

Let X be a compact Hausdorff space. We study finite-to-one map-pings r : X → X, onto X, and measures on the corresponding projective limit space X∞(r). We show that the invariant measures on X∞(r) correspond in a one-to-one fashion to measures on X which satisfy two identities. Moreover, we identify those special measures on X∞(r) which are associated via our correspondence with a function V on...

متن کامل

ar X iv : h ep - t h / 01 01 05 9 v 2 1 4 M ay 2 00 1

We consider the complex scalar field coupled to background NC U(1) YM and calculate the correlator of two gauge invariant composite operators. We show how the noncommutative gauge invariance is restored for higher correlators (though the Green's function itself is not invariant). It is interesting that the recently discovered noncommutative solitons appear in the calculation.

متن کامل

ar X iv : h ep - t h / 04 05 01 3 v 1 3 M ay 2 00 4 Ladder operators for subtle hidden shape invariant potentials 1

Ladder operators can be constructed for all potentials that present the integrability condition known as shape invariance, satisfied by most of the exactly solvable potentials. Using the superalgebra of supersymmetric quantum mechanics we construct the ladder operators for two exactly solvable potentials that present a subtle hidden shape invariance. PACS No. 03.65.Fd, 11.30.Pb, 31.15.Pf

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005